扩散器

神奇的分子运动带你看世界

发布时间:2025/3/6 14:52:59   
新疆白癜风微信交流群 http://cgia.cn/news/chanye/1664375.html
我们都曾闻到过煤气或天然泄露的那种怪怪的臭味,本来煤气就是一种无色无味的气体,为了预防煤气泄露,“特意”在煤气中加入一种“臭臭”的味道。为的就是提醒人们,煤气泄露很危险。现在有电子鼻,稍微有一点煤气的味道,警报就会响起,这为人们安全使用煤气或天然气大大地提供了方便。那么,为什么会这么迅速地使我们就能检测到煤气或天然气泄露呢?一、分子的扩散性。无论是液体的还是气体的,分子都具有扩散性。分子扩散,也称分子传质,简称扩散,是由于分子的无规则热运动而形成的物质传递现象。扩散与温度有关,是质量传递的一种基本方式,是在浓度差或其他推动力的作用下,由于分子、原子等的热运动所引起的物质在空间的迁移现象。敲黑板:分子扩散是分子的无规则热运动而形成的物质传递现象。以浓度差为推动力的扩散,即物质组分从高浓度区向低浓度区的迁移,是自然界和工程上最普遍的扩散现象;以温度差为推动力的扩散称为热扩散;在电场、磁场等外力作用下发生的扩散,则称为强制扩散。注意浓度!有些气体或固体到达一定浓度,遇到明火就会发生爆炸,比如,煤气爆炸,面粉爆炸,粉尘爆炸等等。二、分子运动分子的存在形式可以为气态、液态或固态。分子除具有平移运动外,还存在着分子的转动和分子内原子的各种类型的振动。固态分子内部的振动和转动的幅度,比气体和液体中分子的平动和转动幅度小得多,分子的这种内部运动,并不会破坏分子的固有特性。通常所说的分子结构,是这些原子处在平衡位置时的结构。分子的内部运动,决定分子光谱的性质,因而利用分子光谱,可以研究分子内部运动情况。分子的构型和构象相同成分的分子中,若原子的排列次序和排列方式不同,可形成不同的分子。例如C2H6O分子可以排列为乙醇分子,也可以排列为二甲醚分子,它们的结构式所示分子的结构式反映分子内部原子的排列次序。组成分子的成分相同,而排列次序不同,形成两种或两种以上的分子,这种现象称为同分异构现象,这些成分相同结构不同的分子称为同分异构体。对有些分子,当它的构型确定时,分子的形状大小也就确定了,例如水分子、甲烷分子、苯分子等。有些分子在一定的构型条件下,分子的形状还会随原子的相对位置而改变。例如乙烷(C2H6)分子在相同的连接次序及双原子分子纯转动光谱相同的键长键角数据下,还可以有交叉式(图3之a)和重叠式(图3之b)两种不同形状,这种情况称为分子的构象。不同构象的分子,能量有一定差别,它们的对称性亦不同,对于乙烷分子,常温下交叉式的构象比较稳定。三、分子运动与布朗运动分子扩散是分子的无规则热运动而形成的物质传递现象。年英国植物学家R.布朗在花粉颗粒的水溶液中观察到花粉不停顿的无规则运动。进一步实验证实,不仅花粉颗粒,其他悬浮在流体中的微粒也表现出这种无规则运动,如悬浮在空气中的尘埃。后人就把这种微粒的运动称之为布朗运动。以悬浮在水中的藤黄颗粒为例,一个半径为2x10^-7米的藤黄颗粒,质量约为3x10^-17千克,在27℃时它的运动速率接近0.02米/秒。起初人们不了解这种运动的起因。年J.德耳索首先指出布朗运动是由于颗粒受到液体分子碰撞的不平衡力作用而引起的。随后,年法国科学家H.潘卡雷作了进一步解释:大物体(如线度为0.1毫米)将从各个方面受到运动原子的冲击,打击非常频繁,概率定律使之互相补偿,故它们不移动。微小的粒子受到的打击太少,以至无法补偿。也就是说,布朗运动是液体分子处于不停顿无规则热运动的宏观表现。-年A.爱因斯坦和M.von斯莫卢霍夫斯基分别发表了理论上分析布朗运动的文章。年皮兰用实验验证了爱因斯坦的理论,从而使分子动理论的物理图像为人们广泛接受。例如,在显微镜下观察悬浮在水中的藤黄粉、花粉微粒,或在无风情形观察空气中的烟粒、尘埃时都会看到这种运动。温度越高,运动越激烈。它是年植物学家R.布朗最先用显微镜观察悬浮在水中花粉的运动而发现的。作布朗运动的粒子非常微小,直径约1~10微米,在周围液体或气体分子的碰撞下,产生一种涨落不定的净作用力,导致微粒的布朗运动。如果布朗粒子相互碰撞的机会很少,可以看成是巨大分子组成的理想气体,则在重力场中达到热平衡后,其数密度按高度的分布应遵循玻耳兹曼分布(麦克斯韦-玻尔兹曼分布)。J.B.佩兰的实验证实了这一点,并由此相当精确地测定了阿伏伽德罗常量及一系列与微粒有关的数据。年A.爱因斯坦根据扩散方程建立了布朗运动的统计理论。布朗运动的发现、实验研究和理论分析间接地证实了分子的无规则热运动,对于气体动理论的建立以及确认物质结构的原子性具有重要意义,并且推动统计物理学特别是涨落理论的发展。由于布朗运动代表一种随机涨落现象,它的理论对于仪表测量精度限制的研究以及高倍放大电讯电路中背景噪声的研究等有广泛应用。这是年英国植物学家布朗(~)用显微镜观察悬浮在水中的花粉时发现的。后来把悬浮微粒的这种运动叫做布朗运动。不只是花粉和小炭粒,对于液体中各种不同的悬浮微粒,都可以观察到布朗运动。布朗运动可在气体和液体中进行。[1]布朗描述分子运动是:1.无规则每个液体分子对小颗粒撞击时给颗粒一定的瞬时冲力,由于分子运动的无规则性,每一瞬间,每个分子撞击时对小颗粒的冲力大小、方向都不相同,合力大小、方向随时改变,因而布朗运动是无规则的。2.永不停歇因为液体分子的运动是永不停息的,所以液体分子对固体微粒的撞击也是永不停息的。3.颗粒越小,布朗运动越明显颗粒越小,颗粒的表面积越小,同一瞬间,撞击颗粒的液体分子数越少,据统计规律,少量分子同时作用于小颗粒时,它们的合力是不可能平衡的。而且,同一瞬间撞击的分子数越少,其合力越不平衡,又颗粒越小,其质量越小,因而颗粒的加速度越大,运动状态越容易改变,故颗粒越小,布朗运动越明显。4.温度越高,布朗运动越明显温度越高,液体分子的运动越剧烈,分子撞击颗粒时对颗粒的撞击力越大,因而同一瞬间来自各个不同方向的液体分子对颗粒撞击力越大,小颗粒的运动状态改变越快,故温度越高,布朗运动越明显。5.肉眼看不见做布朗运动的固体颗粒很小,肉眼是看不见的,必须在显微镜才能看到。布朗运动间接反映并证明了分子热运动。四.爱恩斯坦与分子运动年,爱因斯坦依据分子运动论的原理提出了布朗运动的理论。就在差不多同时,斯莫卢霍夫斯基也作出了同样的成果。他们的理论圆满地回答了布朗运动的本质问题。应该指出,爱因斯坦从事这一工作的历史背景是那时科学界关于分子真实性的争论。这种争论由来已久,从原子分子理论产生以来就一直存在。本世纪初,以物理学家和哲学家马赫和化学家奥斯特瓦尔德为代表的一些人再次提出对原子分子理论的非难,他们从实证论或唯能论的观点出发,怀疑原子和分子的真实性,使得这一争论成为科学前沿中的一个中心问题。要回答这一问题,除开哲学上的分歧之外,就科学本身来说,就需要提出更有力的证据,证明原子、分子的真实存在。比如以往测定的相对原子质量和相对分子质量只是质量的相对比较值,如果它们是真实存在的,就能够而且也必须测得相对原子质量和相对分子质量的绝对值,这类问题需要人们回答。小结:布朗运动与分子热运动不一样,与温度和粒子个数有关,温度越高,布朗运动越剧烈,粒子越少,分子热运动越剧烈。图片模糊,建议替换或删除×按经典热力学的观点,布朗运动严格来说属于机械运动,因此它表现出的是一种机械能。有人据此对热力学第二定律提出质疑。实际上,布朗运动是一种特殊的机械运动,做布朗运动的颗粒正好处于宏观与微观的分界点上,所以布朗运动中机械能同时具有一般意义上的宏观机械能与微观分子动能的双重特性,它的能量集中程度介于两者之间,无序性也介于两者之间。任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律。无规则行走只是布朗运动的理想状态无规则行走只是布朗运动的理想状态二者概念不等同,实际观测,在纳米尺度下,不规则物体布朗运动不满足高斯分布。在很多系统都存在不同类型的无规则行走,他们都具有相似结构。单个的随机事件我们不可预测,但随机大量的群体行为,却是精确可知的,这就是概率世界的魅力,在偶然中隐含着必然。随机性造成了低尺度下的差异性,但在高尺度下又表现为共同的特征的相似性。按照概率的观点“宇宙即是所有随机事件概率的总和”

转载请注明:http://www.aideyishus.com/lkcf/8194.html
------分隔线----------------------------